How to Increase the Nutritional Quality of Stinging Nettle Through Controlled Plant Nutrition

Author:

Dujmović Mia1ORCID,Opačić Nevena2ORCID,Radman Sanja2ORCID,Fabek Uher Sanja2ORCID,Čoga Lepomir3ORCID,Petek Marko3ORCID,Sandra Voća Sandra Voća1ORCID,Šic Žlabur Jana1ORCID

Affiliation:

1. Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia

2. Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia

3. Department of Plant Nutrition, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia

Abstract

Research background. As food production faces major challenges, modern agricultural practices are increasingly focused on conserving resources, reducing negative environmental impacts and sustainably producing food with a high content of health-promoting phytochemicals. During production, many factors can affect the quality and chemical composition of a final food product. Proper selection of cultivating conditions, especially a balanced nutrition, can significantly increase nutritional value and result in foods with strong biological and functional properties. Stinging nettle is a rich source of minerals, vitamins, pigments, phenols and other bioactive compounds and can be consumed as a green leafy vegetable with beneficial effects on human health. Therefore, the aim of this study is to determine the nutritional quality and antioxidant capacity of stinging nettle leaves under the influence of different nutrient solution (NS) treatments and three harvest cycles. Experimental approach. The experiment was conducted in a floating hydroponic system in which treatments with different nutrient solutions were applied and three harvest cycles were carried out. After each harvest, the following treatments were applied: treatment 1 – depletion of nutrient solution by adding water, treatment 2 – supplementation of nutrient solution by adding initial nutrient solution and treatment 3 – correction of nutrient solution by adding nutrients. Among the bioactive compounds, minerals, ascorbic acid, phenols and photosynthetic pigments content, as well as antioxidant capacity were analysed spectrophotometrically, while individual phenols were determined by liquid chromatography. Results and conclusions. Different nutrition solution treatments and the number of harvest cycles had a significant effect on the content of the analysed bioactive compounds. The highest mass fraction (on fresh mass basis) of total phenols expressed as gallic acid equivalents (377.04 mg/100 g), total flavonoids expressed as catechol equivalents (279.54 mg/100 g), ascorbic acid (112.37 mg/100 g) and pigments (total chlorophylls 1.84, and total carotenoids 0.36 mg/g) as well as the highest antioxidant capacity expressed as Trolox equivalents (35.47 μmol/g) were recorded in the samples supplemented with nutrient solution (treatment NS2) and analysed after the third harvest. Novelty and scientific contribution. This is the first time that stinging nettle leaves have been produced in a floating hydroponic system by controlled plant nutrition. We have set this type of nutritional manipulation with multiple harvest cycles as an innovative technique for the production of novel food with improved nutritional value that can be consumed as green leafy vegetables.

Funder

Hrvatska Zaklada za Znanost

Publisher

Faculty of Food Technology and Biotechnology - University of Zagreb

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,Food Science,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3