Utilization of Reconstituted Whey Powder and Microbial Transglutaminase in Ayran (Drinking Yogurt) Production

Author:

Akal Ceren1ORCID,Koçak Celalettin1ORCID,Kanca Nazlı1ORCID,Özer Barbaros1ORCID

Affiliation:

1. Department of Dairy Technology, Faculty of Agriculture, Ankara University, Sehit Omer Halisdemir Cad., 06110, Diskapi, Ankara, Turkey

Abstract

Research background. In industrial ayran production, milk is diluted to the desired protein content (2 % (m/V)) prior to fermentation by yogurt starter cultures by partial replacement of cheese whey in reconstituted form with potable water. This may be an alternative way of protein recovery from cheese by-products as well as reducing the production costs since less milk is used in ayran production. On the other hand, the balance between milk caseins and whey proteins is disturbed when cheese whey is added to milk for ayran production, which likely leads to a time-dependent phase separation during cold storage. Modification of ayran matrix by enzymatic crosslinking of proteins may be a solution to overcome this potential physical instability of ayran. This topic has not been explored to date, and the present study was designed to investigate the possibilities of utilization of reconstituted whey powder (RWP) and microbial transglutaminase (MTG) in ayran production. Experimental approach. Milk was diluted to obtain 2 % protein level using RWP and potable water. The aim of utilization of RWP was to meet 5, 10 or 15 % of the protein content of the final product. RWP solutions were obtained by calculating the amounts of whey powder required to meet the specified ratios and mixing it with the water required for dilution. We prepared eight different ayran samples divided in three groups, namely group A: prepared by partially diluting milk with RWP to obtain 5, 10 or 15 % of total protein amount in the product, group AMTG: prepared by adding microbial transglutaminase (0.5 U per g of protein) to group A samples, and control group without RWP and with or without the addition of MTG. The gross composition, physical (phase separation and viscosity, chemical (volatile and peptide profiles and SDS-PAGE electrophoresis patterns) and sensory properties of the samples were evaluated throughout 15 days of storage with weekly intervals. Results and conclusions. Since the amounts of whey powder used to obtain RWP were different, dry matter levels of the samples differed. Using RWP in ayran production increased the phase separation slightly. Incorporation of MTG affected the physical properties of the ayran samples positively and prevented phase separation at a satisfactory level. SDS-PAGE electrophoretograms revealed that cross-linking between proteins triggered by MTG formed intense bonds at high molecular mass regions. The remaining parameters were not affected by MTG. Results revealed that the samples with 10 % RWP with and without the addition of MTG were determined as the formulations with the highest commercialization potential. Novelty and scientific contribution. Utilizing RWP in the production of ayran to reduce the protein content of the final product to the desired level is a new approach. Since complete replacement of RWP with potable water to dilute milk to reach 2 % (m/V) protein likely leads to lower sensory scores, we have investigated a possibility of partial replacement of RWP with potable water. A time-dependent phase separation is the major challenge of industrial ayran production. This physical problem was largely eliminated by means of MTG-mediated cross-linking of milk proteins. The proposed novel ayran production method offers dairy industry reduction of production costs and contributes to sustainability in milk production since smaller volume of milk is used to reach desired protein content in the final product.

Funder

Ankara Universitesi

Publisher

Faculty of Food Technology and Biotechnology - University of Zagreb

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,Food Science,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3