Application of Deep Learning Convolution Neural Network Method on KRSBI Humanoid R-SCUAD Robot

Author:

Irfan Syahid Al,Widodo Nuryono Satya

Abstract

In a soccer game the ability of humanoid robots that one needs to have is to see the ball object in real time. Development of the ability of humanoid robots to see the ball has been developed but the level of accuracy of object recognition and adaptation during matches still needs to be improved. The architecture designed in this study is Convolutional Neural Network or CNN which is designed to have 6 hidden layers with implementation of the robot program using the Tensorflow library. The pictures taken are used in the training process to have 9 types of images based on where the pictures were taken. Each type of image is divided into 2 classes, namely 2000 images for ball object classes and 2000 images for non-ball object classes. The test is done in real time using a white ball on green grass. From the architectural design and white ball detection test results obtained a success rate of 67%, five of the nine models managed to recognize the ball. The model can recognize objects with an image processing speed of a maximum of 13 FPS.Dalam pertandingan sepak bola kemampuan robot humanoid yang perlu dimiliki salah satunya adalah melihat objek bola secara real time. Pengembangan kemampuan robot humanoid untuk melihat bola telah dikembangkan tetapi tingkat akurasi pengenalan objek dan adaptasi saat pertandingan masih perlu ditingkatkan. Arsitektur yang dirancang pada penelitian ini yaitu Convolutional Neural Network atau CNN yang dirancang memiliki 6 hidden layer dengan implementasi pada program robot menggunakan library Tensorflow. Gambar yang diambil digunakan dalam proses training memiliki 9 jenis gambar berdasarkan tempat pengambilan gambar. Tiap jenis gambar terbagi menjadi 2 class yaitu 2000 gambar untuk class objek bola dan 2000 gambar untuk class objek bukan bola. Pengujian dilakukan secara real time dengan menggunakan bola berwarna putih di atas rumput hijau. Dari perancangan arsitektur dan hasil pengujian pendeteksian bola putih didapatkan persentase keberhasilan 67% yaitu lima dari sembilan model berhasil mengenali bola. Model dapat mengenali objek dengan kecepatan pengolahan gambar adalah maksimal 13 FPS.

Publisher

Universitas Ahmad Dahlan

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Business and International Management

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Electricity Customer Behavior Prediction Based on Improved Time Convolutional Network;2022 2nd International Conference on Electrical Engineering and Control Science (IC2ECS);2022-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3