Generating bounded solutions for multi-demand multidimensional knapsack problems: a guide for operations research practitioners

Author:

Dellinger Anthony,Lu Yun,Song Myung Soon,Vasko Francis J.

Abstract

A generalization of the 0-1 knapsack problem that is hard-to-solve both theoretically (NP-hard) and in practice is the multi-demand multidimensional knapsack problem (MDMKP). Solving an MDMKP can be difficult because of its conflicting knapsack and demand constraints. Approximate solution approaches provide no guarantees on solution quality. Recently, with the use of classification trees, MDMKPs were partitioned into three general categories based on their expected performance using the integer programming option of the CPLEX® software package on a standard PC: Category A—relatively easy to solve, Category B—somewhat difficult to solve, and Category C—difficult to solve. However, no solution methods were associated with these categories. The primary contribution of this article is that it demonstrates, customized to each category, how general-purpose integer programming software (CPLEX in this case) can be iteratively used to efficiently generate bounded solutions for MDMKPs. Specifically, the simple sequential increasing tolerance (SSIT) methodology will iteratively use CPLEX with loosening tolerances to efficiently generate these bounded solutions. The real strength of this approach is that the SSIT methodology is customized based on the particular category (A, B, or C) of the MDMKP instance being solved. This methodology is easy for practitioners to use because it requires no time-consuming effort of coding problem specific-algorithms. Statistical analyses will compare the SSIT results to a single-pass execution of CPLEX in terms of execution time and solution quality.

Publisher

Universitas Ahmad Dahlan

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3