Stegomalware: A Systematic Survey of Malware Hiding and Detection in Images, Machine Learning Models and Research Challenges

Author:

chaganti Raj,R vinayakumarORCID,Alazab Mamoun,Pham Tuan

Abstract

<div>Malware distribution to the victim network is commonly performed through file attachments in phishing email or downloading illegitimate files from the internet, when the victim interacts with the source of infection. To detect and prevent the malware distribution in the victim machine, the existing end device security applications may leverage sophisticated techniques such as signature-based or anomaly-based, machine learning techniques. The well-known file formats Portable Executable (PE) for Windows and Executable and Linkable Format (ELF) for Linux based operating system are used for malware analysis and the malware detection capabilities of these files has been well advanced for real time detection. But the malware payload hiding in multimedia like cover images using steganography detection has been a challenge for enterprises, as these are rarely seen and usually act as a stager in sophisticated attacks. In this article, to our knowledge, we are the first to try to address the knowledge gap between the current progress in image steganography and steganalysis academic research focusing on data hiding and the review of the stegomalware (malware payload hiding in images) targeting enterprises with cyberattacks current status. We present the stegomalware history, generation tools, file format specification description. Based on our findings, we perform the detail review of the image steganography techniques including the recent Generative Adversarial Networks (GAN) based models and the image steganalysis methods including the Deep Learning opportunities and challenges in stegomalware generation and detection are presented based on our findings.</div>

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Text Steganography Methods and their Influence in Malware: A Comprehensive Overview and Evaluation;Proceedings of the 2024 ACM Workshop on Information Hiding and Multimedia Security;2024-06-24

2. An Overview of Artificial Intelligence Used in Malware;Communications in Computer and Information Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3