Receding Horizon Control Using Graph Search for Multi-Agent Trajectory Planning

Author:

Scheffe Patrick,Pedrosa Matheus Vitor de Andrade,Flaßkamp Kathrin,Alrifaee Bassam

Abstract

<pre>It is hard to find the global optimum to general nonlinear, nonconvex optimization problems in reasonable time. This paper presents a method to transfer the receding horizon control approach, where nonlinear, nonconvex optimization problems are considered, into graph-search problems. Specifically, systems with symmetries are considered to transfer system dynamics into a finite state automaton. In contrast to traditional graph-search approaches where the search continues until the goal vertex is found, the transfer of a receding horizon control approach to graph-search problems presented in this paper allows to solve them in real-time. We proof that the solutions are recursively feasible by restricting the graph search to end in accepting states of the underlying finite state automaton. The approach is applied to trajectory planning for multiple networked and autonomous vehicles. We evaluate its effectiveness in simulation as well as in experiments in the Cyber-Physical Mobility Lab, an open source platform for networked and autonomous vehicles. We show real-time capable trajectory planning with collision avoidance in experiments on off-the-shelf hardware and code in MATLAB for two vehicles.</pre>

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3