Statistical Tools and Methodologies for URLLC- A Tutorial

Author:

López Onel AlcarazORCID,Shehab Mohammad,Mahmood Nurul H.,Alves Hirley,Martínez Rosabal Osmel,Marata Leatile,Latva-aho Matti

Abstract

<p>Ultra-reliable low-latency communication (URLLC) constitutes a key service class of the fifth generation and beyond cellular networks. Notably, designing and supporting URLLC poses a herculean task due to the fundamental need of identifying and accurately characterizing the underlying statistical models in which the system operates, e.g., interference statistics, channel conditions, and the behavior of protocols. In general,  multi-layer end-to-end approaches considering all the potential delay and error sources   and proper statistical tools and methodologies are inevitably required for providing strong reliability and latency guarantees. This paper contributes to the body of knowledge in the latter aspect by providing a tutorial on several statistical tools and methodologies that are useful for designing and analyzing URLLC systems. Specifically, we overview the frameworks related to i) reliability theory, ii) short packet communications, iii) inequalities, distribution bounds, tail approximations, and risk-assessment tools, iv) rare events simulation, v) large-scale tools such as stochastic geometry, clustering, compressed sensing, and mean-field games, vi) queuing  theory and information freshness, and vii) machine learning. Throughout the paper, we briefly review the state-of-the-art works using the addressed tools and methodologies, and their link to URLLC systems. Moreover, we discuss novel application examples focused on physical and medium access control layers. Finally, key research challenges and directions are highlighted to elucidate how URLLC analysis/design research may evolve in the coming years.</p>

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GANs for EVT Based Model Parameter Estimation in Real-time Ultra-Reliable Communication;2024 Joint European Conference on Networks and Communications &amp; 6G Summit (EuCNC/6G Summit);2024-06-03

2. Reliability-Optimized User Admission Control for URLLC Traffic: A Neural Contextual Bandit Approach;2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN);2024-05-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3