Digital Twin-based Cyber-Attack Detection Framework for Cyber-Physical Manufacturing Systems

Author:

Balta Efe C.ORCID,Pease Michael,Moyne James,Barton KiraORCID,Tilbury DawnORCID

Abstract

<p>Smart manufacturing (SM) systems utilize run-time data to improve productivity via intelligent decision-making and analysis mechanisms on both machine and system levels. The increased adoption of cyber-physical systems in SM leads to the comprehensive framework of cyber-physical manufacturing systems (CPMS) where data-enabled decision-making mechanisms are coupled with cyber-physical resources on the plant floor. Due to their cyber-physical nature, CPMS are susceptible to cyber-attacks that may cause harm to the manufacturing system, products, or even the human workers involved in this context. Therefore, detecting cyber-attacks efficiently and timely is a crucial step toward implementing and securing high-performance CPMS in practice. This paper addresses two key challenges to CPMS cyber-attack detection. The first challenge is distinguishing expected anomalies in the system from cyber-attacks. The second challenge is the identification of cyber-attacks during the transient response of CPMS due to closed-loop controllers. Digital twin (DT) technology emerges as a promising solution for providing additional insights into the physical process (twin) by leveraging run-time data, models, and analytics. In this work, we propose a DT framework for detecting cyber-attacks in CPMS during controlled transient behavior as well as expected anomalies of the physical process. We present a DT framework and provide details on structuring the architecture to support cyber-attack detection. Additionally, we present an experimental case study on off-the-shelf 3D printers to detect cyber-attacks utilizing the proposed DT framework to illustrate the effectiveness of our proposed approach.</p>

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3