Artificial Intelligence for Clinical Gait Diagnostics of Knee Osteoarthritis: An Evidence - based Review and Analysis

Author:

Parisi LucaORCID,RaviChandran NarrendarORCID,Lanzillotta Matteo

Abstract

<div> <p><b>Background</b></p> <p>Knee osteoarthritis (OA) remains a leading aetiology of disability worldwide. With recent advances in gait analysis, clinical assessment of such a knee-related condition has been improved. Although motion capture (mocap) technology is deemed the gold standard for gait analysis, it heavily relies on adequate data processing to yield clinically significant results. Moreover, gait data is non-linear and high-dimensional. Due to missing data involved in a mocap session and typical statistical assumptions, conventional data processing methods are unable to reveal the intrinsic patterns to predict gait abnormalities. </p> <p><b>Research question</b></p> <p>Albeit studies have demonstrated the potential of Artificial Intelligence (AI) algorithms to address these limitations, these algorithms have not gained wide acceptance amongst biomechanists. The most common AI algorithms used in gait analysis are based on machine learning (ML) and artificial neural networks (ANN). By comparing the predictive capability of such algorithms from published studies, we assessed their potential to augment current clinical gait diagnostics when dealing with knee OA. </p> <p><b>Methods</b></p> <p>Thus, an evidence-based review and analysis were conducted. With over 188 studies identified, 8 studies met the inclusion criteria for a subsequent analysis, accounting for 78 participants overall. </p> <p><b>Results</b></p> <p>The classification performance of ML and ANN algorithms was quantitatively assessed. The test classification accuracy (ACC), sensitivity (SN), specificity (SP) and area under the curve (AUC) of the ML-based algorithms were clinically valuable, i.e., all higher than 85%, differently from those obtained via ANN. </p> <p><b>Significance</b></p> <p>This study demonstrates the potential of ML for clinical assessment of knee disorders in an accurate and reliable manner.</p> </div>

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3