A Comprehensive Survey of Deep Learning Multisensor Fusion-based 3D Object Detection for Autonomous Driving: Methods, Challenges, Open Issues, and Future Directions

Author:

Alaba SimegnewORCID,Gurbuz Ali,Ball John

Abstract

<p>Autonomous driving requires accurate, robust, and fast decision-making perception systems to understand the driving environment. Object detection is critical in allowing the perception system to understand the environment. The perception systems, especially 2D object detection and classification, have succeeded because of the emergence of deep learning (DL) in computer vision (CV) applications. However, 2D object detection lacks depth information, which is crucial to understanding the driving environment. Therefore, 3D object detection is fundamental for the perception system of autonomous driving and robotics applications to estimate the objects’ location and understand the driving environment. The CV community has been giving much attention recently to 3D object detection because of the growth of DL models and the need to know accurate locations of objects. However, 3D object detection is still challenging because of scale changes, the lack of 3D sensor information, and occlusions. Researchers have been using multiple sensors to solve these problems and further enhance the performance of the perception system. This survey presents the multisensor (camera, radar, and LiDAR) fusion-based 3D object detection methods. The fully autonomous vehicles need to be equipped with multiple sensors for robust and reliable driving. Camera, LiDAR, and radar sensors and their corresponding advantages and disadvantages are also presented. Then, relevant datasets are summarized, and state-of-the-art multisensor fusion-based methods are reviewed. Finally, challenges, open issues, and possible research directions are presented.</p>

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3