Improving Small Objects Detection using Transformer
Author:
Dubey Shikha,Olimov Farrukh,Rafique Muhammad Aasim,Jeon Moongu
Abstract
General artificial intelligence is a trade-off between the inductive bias of an algorithm and its out-of-distribution generalization performance. The conspicuous impact of inductive bias is an unceasing trend of improved predictions in various problems in computer vision like object detection. Although a recently introduced object detection technique, based on transformers (DETR), shows results competitive to the conventional and modern object detection models, its accuracy deteriorates for detecting small-sized objects (in perspective). This study examines the inductive bias of DETR and proposes a normalized inductive bias for object detection using a transformer (SOF-DETR). It uses a lazy-fusion of features to sustain deep contextual information of objects present in the image. The features from multiple subsequent deep layers are fused with element-wise-summation and input to a transformer network for object queries that learn the long and short-distance spatial association in the image by the attention mechanism.<br>SOF-DETR uses a global set-based prediction for object detection, which directly produces a set of bounding boxes. The experimental results on the MS COCO dataset show the effectiveness of the added normalized inductive bias and feature fusion techniques by detecting more small-sized objects than DETR. <br>
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献