Abstract
We investigate the benefits of feature selection, nonlinear modelling and online learning when forecasting financial time series. We combine sequential updating with continual learning, specifically transfer learning. We perform feature representation transfer through clustering algorithms that determine the analytical structure of radial basis function networks we construct. These networks achieve lower mean-square prediction errors than kernel ridge regression models, which arbitrarily use all training vectors as prototypes. We also demonstrate quantitative procedures to determine the very structure of the networks. Finally, we conduct experiments on the log-returns of financial time series and show that these online transfer learning models outperform a random-walk baseline. In contrast, the offline learning models struggle to do so.
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Sequential asset ranking in nonstationary time series;3rd ACM International Conference on AI in Finance;2022-10-26