Federated Learning using Peer-to-peer Network for Decentralized Orchestration of Model Weights

Author:

Behera Monik Raj,upadhyay sudhir,Shetty Suresh,Otter Robert

Abstract

<div>In recent times, Machine learning and Artificial intelligence have become one of the key emerging fields of computer science. Many researchers and businesses are benefited by machine learning models that are trained by data processing at scale. However, machine learning, and particularly Deep Learning requires large amounts of data, that in several instances are proprietary and confidential to many businesses. In order to respect individual organization’s privacy in collaborative machine learning, federated learning could play a crucial role. Such implementations of privacy preserving federated learning find applicability in various ecosystems like finance, health care, legal, research and other fields that require preservation of privacy. However, many such implementations are driven by a centralized architecture in the network, where the aggregator node becomes the single point of failure, and is also expected with lots of computing resources at its disposal. In this paper, we propose an approach of implementing a decentralized, peer-topeer federated learning framework, that leverages RAFT based aggregator selection. The proposal hinges on that fact that there is no one permanent aggregator, but instead a transient, time based elected leader, which will aggregate the models from all the peers in the network. The leader ( aggregator) publishes the aggregated model on the network, for everyone to consume. Along with peer-to-peer network and RAFT based aggregator selection, the framework uses dynamic generation of cryptographic keys, to create a more secure mechanism for delivery of models within the network. The key rotation also ensures anonymity of the sender on the network too. Experiments conducted in the paper, verifies the usage of peer-to-peer network for creating a resilient federated learning network. Although the proposed solution uses an artificial neural network in it’s reference implementation, the generic design of the framework can accommodate any federated learning model within the network.</div>

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Collaboratives with the Use of Decentralised Learning;2023 ACM Conference on Fairness, Accountability, and Transparency;2023-06-12

2. The Role and Impact of Federal Learning in Digital Healthcare;Advances in Information Security, Privacy, and Ethics;2022-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3