Author:
Demetre Joel S.,Smy Tom J.,Gupta Shulabh
Abstract
<div>A static metasurface reflector based on a novel coupled resonator configuration is proposed to independently control</div><div>the reflection phase and magnitude of linearly polarized incident fields, and is demonstrated experimentally in the millimeter-wave Ka-band around 30 GHz. The proposed concept is illustrated using a unit cell design consisting of a rectangular ring coupled with a rectangular slot resonator backed by a grounded dielectric slab. By geometrically tuning various dimensions of the two resonators, a near-perfect amplitude-phase coverage is achieved at a fixed design frequency of 30 GHz. To demonstrate the flexible beam-forming capability of the proposed metasurface reflectors, illustrative examples of fixed beam steering with varying reflection magnitudes, and asymmetric dual-beam patterns with specified reflection magnitude, reflection angles and beam-widths, are successfully shown. Compared to the standard method based on polarization rotation and resistive loadings with discrete values, the proposed technique does not generate undesired cross-polarization field reflection, and provides a continuous magnitude tuning including full absorption, along with wide phase coverage.</div>
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献