The Interplay of AI and Digital Twin: Bridging the Gap between Data-Driven and Model-Driven Approaches

Author:

Bariah Lina,Debbah Merouane

Abstract

<p>The advancements of mixed reality services, with the evolution of network virtualization and native artificial intelligence (AI) paradigms, have conceptualized the vision of future wireless networks as a comprehensive entity operating in whole over a digital platform, with smart interaction with the physical domain, paving the way for the blooming of the Digital Twin (DT) concept. The recent interest in the DT networks is fueled by the emergence of novel wireless technologies and use-cases, that exacerbate the level of complexity to orchestrate the network and to manage its resources. Driven by the internet-of-sensing and AI, the key principle of the DT is to create a virtual twin for the physical entities and network dynamics, where the virtual twin will be leveraged to generate synthetic data, in addition to the received sensed data from the physical twin in an on-demand manner. The available data at the twin will be the foundation for AI models training and intelligent inference process. Despite the common understanding that AI is the seed for DT, we anticipate the DT and AI will be enablers for each other, in a way that overcome their limitations and complement each other benefits. In this article, we dig into the fundamentals of DT, where we reveal the role of DT in unifying model-driven and data-driven approaches, and explore the opportunities offered by DT in order to achieve the optimistic vision of 6G networks. We further unfold the essential role of the theoretical underpinnings in unlocking further opportunities by AI, and hence, we unveil their pivotal impact on the realization of reliable, efficient, and low-latency DT. Finally, we identify the limitations of AI-DT and overview potential future research directions, to open the floor for further exploration in AI for DT and DT for AI.</p>

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3