Fault detection Automation in Distributed Control Systems using Data-driven methods: SVM and KNN

Author:

Ahmadi Seyed Hossein,Khosrowjerdi Mohammad Javad

Abstract

<p>Fault diagnostic methods with fuzzy logic methods, SVM, KNN and artificial intelligence systems have been used in complex systems such as wind turbines, gas turbines, power distribution systems, power transformers and rotary machines, but in the specific field of distributed control systems, the vacancy of this topic is strongly felt. Due to the need of the industry to detect faults quickly and in a timely manner in all modes of sensors, actuators, outputs and control logics to maintain expensive, valuable resources, important and complex equipment, it is very necessary to enter this topic. In this paper, a suitable theoretical and practical basis for diagnosing various types of faults in the DCS of a gas refinery is done. The fact that the operator quickly identifies the area and the cause of the fault can avoid huge losses in terms of downtime. Automation of fault diagnosis in DCS has not been explicitly mentioned in any article or book, and here the plan is presented for the first time. In this design, we connect MATLAB classification apps to the industrial system like DCS, then data are analyzed by SVM and KNN methods to detect faults. The results show that faults can be detected with a probability of more than 85% accuracy without the need for on-site expert force and with much less time.</p>

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3