Abstract
<p>Malware for Android is becoming increasingly dangerous to the safety of mobile devices and the data they hold. Although machine learning techniques have been shown to be effective at detecting malware for Android, a comprehensive analysis of the methods used is required. We review the current state of Android malware detection using machine learning in this paper. We begin by providing an overview of Android malware and the security issues it causes. Then, we look at the various supervised, unsupervised, and deep learning machine learning approaches that have been utilized for Android malware detection. Additionally, we present a comparison of the performance of various Android malware detection methods and talk about the performance evaluation metrics that are utilized to evaluate their efficacy. Finally, we draw attention to the drawbacks and difficulties of the methods that are currently in use and suggest possible future directions for research in this area. In addition to providing insights into the current state of Android malware detection using machine learning, our review provides a comprehensive overview of the subject.</p>
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献