Corrosive behavior of pipeline steel 17G1C and 13G1C-U in environments NS1-NS3

Author:

Polutrenko Miroslava S., ,Hrytsuliak Halyna M.,Kotsyubynsky Andrij O.,Andrusiak Uliana B., , ,

Abstract

Results of long-term exposure tests (20 months) of 17G1C and 13G1C-U pipeline steel samples in NS1-NS3 model environments (soil electrolyte imitations) are presented in the article. It was established that during the exposure of steel samples in the studied model environments the rate of corrosion processes depends on the component composition of the model environments, the grade of steel and pH. Regardless of the grade of steel, the highest corrosion rate was observed for the NS1 environment, while the corrosion rate for the NS3 environment was almost 21% lower. In the case of the NS2 model environment, the corrosion rate reduction for 17G1C steel was 38.68%, and for 13G1C-U steel – 28.75%, compared to the exposure of these samples in the NS1 environment. The calculated multiple coefficients of determination and linear correlation coefficients indicate a strong relationship between these indicators. The phase composition and structure of corrosion products were determined by the X-ray diffractometer Shimadzu XRD‑7000 using the method of X-ray structural analysis. On the basis of the obtained radiographs, the dominant form of iron oxide, which does not depend on the grade of steel, was determined for each environment. The research results have practical value and can be used in predicting the behavior of underground structures in soils of different corrosive activity.

Publisher

The Oil and Gas Institute - National Research Institute

Subject

Management, Monitoring, Policy and Law,Geochemistry and Petrology,Geophysics,Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology,Fuel Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3