Deep Learning Techniques for Ear Diseases Based on Segmentation of the Normal Tympanic Membrane

Author:

Park Yong SoonORCID,Jeon Jun HoORCID,Kong Tae HoonORCID,Chung Tae YunORCID,Seo Young JoonORCID

Abstract

Objectives. Otitis media is a common infection worldwide. Owing to the limited number of ear specialists and rapid development of telemedicine, several trials have been conducted to develop novel diagnostic strategies to improve the diagnostic accuracy and screening of patients with otologic diseases based on abnormal otoscopic findings. Although these strategies have demonstrated high diagnostic accuracy for the tympanic membrane (TM), the insufficient explainability of these techniques limits their deployment in clinical practice.Methods. We used a deep convolutional neural network (CNN) model based on the segmentation of a normal TM into five substructures (malleus, umbo, cone of light, pars flaccida, and annulus) to identify abnormalities in otoscopic ear images. The mask R-CNN algorithm learned the labeled images. Subsequently, we evaluated the diagnostic performance of combinations of the five substructures using a three-layer fully connected neural network to determine whether ear disease was present.Results. We obtained the receiver operating characteristic (ROC) curve of the optimal conditions for the presence or absence of eardrum diseases according to each substructure separately or combinations of substructures. The highest area under the curve (0.911) was found for a combination of the malleus, cone of light, and umbo, compared with the corresponding areas under the curve of 0.737–0.873 for each substructure. Thus, an algorithm using these five important normal anatomical structures could prove to be explainable and effective in screening abnormal TMs.Conclusion. This automated algorithm can improve diagnostic accuracy by discriminating between normal and abnormal TMs and can facilitate appropriate and timely referral consultations to improve patients’ quality of life in the context of primary care.

Funder

Ministry of Trade, Industry and Energy

Ministry of SMEs and Startups

Publisher

Korean Society of Otorhinolaryngology-Head and Neck Surgery

Subject

Otorhinolaryngology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3