On Seemingly Unrelated Regression and Single Equation Estimators Under Heteroscedastic Error and Non-Gaussian Responses

Author:

Afolayan Rasaq B,Banjoko Alabi W,Garba Mohammad K,Yahya Waheed B

Abstract

This study investigated the efficiency of Seemingly Unrelated Regression (SUR) estimator of Feasible Generalized Least Square (FGLS) compared to robust MM-BISQ, M-Huber, and Ordinary Least Squares (OLS) estimators when the variances of the error terms are non-constant and the distribution of the response variables is not Gaussian. The finite properties and relative performance of these other estimators to OLS were examined under four forms of heteroscedasticity of the error terms, levels of Contemporaneous Correlation (Cc) with gamma responses. The efficiency of four estimation techniques for the SUR model was examined using the Root Mean Square Error (RMSE) criterion to determine the best estimator(s) under different conditions at various sample sizes. The simulation results revealed that the SUR estimator (FGLS) showed superior performance in the small sample situations when the contemporaneous correlation ( ) is almost perfect ( =0.95) with the gamma response model while MM-BISQ was the best under low contemporaneous correlation. The relative efficiencies of MM-BISQ, M-Huber and FGLS estimators over the OLS are respectively 89%, 71%, and 14% in a small sample 30) and 49%, 32% and 1% in large sample sizes  under gamma response model. The study concluded that MM-BISQ and M-Huber estimators are the most efficient estimators for modeling systems of simultaneous equations with non-Gaussian responses under either homoscedastic or multiplicative heteroscedastic error terms irrespective of the sample size.Keywords—, Contemporaneous correlation, Feasible Generalized Least Square, Heteroscedasticity, Homoscedasticity, Seemingly unrelated Regression. 

Publisher

Faculty of Engineering, Federal University Oye-Ekiti

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3