Development of Breast Cancer Prognosis Prediction Model Based on Clinical Features Including CEA and CA15-3 Serum Levels

Author:

Yang Hee Soo,Kwon Seonguk,Lee Seunghee,Lee Suehyun,Kim Jong-Yeup

Abstract

Objectives: Serum levels of carcinoembryonic antigen and cancer antigen 15-3 tumor markers are used for breast cancer prognosis. This study developed a breast cancer prognosis prediction model.Methods: We retrospectively analyzed data of 639 patients diagnosed between January 2012 and December 2019. We selected 20 independent variables with carcinoembryonic antigen and cancer antigen 15-3 serum levels and employed four machine-learning algorithms for the model: artificial neural network, random forest, support vector machine, and logistic regression.Results: Significant differences in carcinoembryonic antigen and cancer antigen 15-3 serum levels, age, history of other diseases excluding hypertension and diabetes mellitus, chemotherapy, and drug therapy were noted between control (n = 576) and case groups (n = 63). The sensitivity and specificity of the artificial neural network model for prognosis prediction were 26.7% and 92.6%, respectively.Conclusions: Carcinoembryonic antigen and cancer antigen 15-3 serum levels were the most significant variables for developing a breast cancer prognosis prediction model using the Shapley additive explanations model. The proposed machine-learning model and tumor marker serum levels may be useful for breast cancer prognosis.

Funder

Korea Health Industry Development Institute

Ministry of Health and Welfare

National Cancer Center

Publisher

The Korean Society of Health Informatics and Statistics

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3