Forecasting Raw Material Demand for Battery Breaker Production Process

Author:

Anshori Muhammad Hizam,Cahyana Atikha Sidhi

Abstract

This study aims to identify the most effective forecasting method for predicting raw material demand in the tin smelting industry, addressing the challenge of uncertainty in material arrival and inaccurate demand forecasting. Three methods, namely moving averages with n = 3 and n = 5, and exponential smoothing, were evaluated using historical data. Results indicate that exponential smoothing with α = 0.2 outperformed the other methods, yielding the smallest error rate with a Mean Absolute Percentage Error (MAPE) of 23%, Mean Absolute Deviation (MAD) of 411, and Mean Squared Error (MSE) of 293303. The implication of these findings underscores the importance of employing appropriate forecasting techniques to optimize inventory management and mitigate shortages in critical industries reliant on volatile raw material supplies. Highlights : Accurate demand forecasting is crucial for companies engaged in smelting to prevent shortages and inventory increases. Three methods were used to determine the most appropriate forecasting method for raw material demand based on historical data: moving average with n = 3 and n = 5, and exponential smoothing with α = 0.2. The Exponential Smoothing Method with α = 0.2 had the smallest error rate, with a MAPE value of 23%, MAD of 411, and MSE of 293303, and can be used to optimize demand forecasting for the next period. Keywords: demand forecasting, smelting, raw materials, historical data, moving average, exponential smoothing.

Publisher

Universitas Muhammadiyah Sidoarjo

Reference15 articles.

1. A. S. Cahyana And I. A. S. Wulandari, Buku Ajar Manufaktur Berkelanjutan, Edisi Pertama. Sidoarjo, Jawa Timur: Umsida Press, 2021.

2. R. Yudaruddin, Forecasting Untuk Kegiatan Ekonomi Dan Bisnis, Edisi Pertama. Samarinda, Kalimantan Timur: Rv. Pustaka Horizon Anggota Ikapi, 2019.

3. D. Ratna Kania, S. Putri Lestari, B. Barlian, P. Studi Manajemen, F. Ekonomi Dan Bisnis, And U. Perjuangan Tasikmalaya, “Penerapan Metode Peramalan Moving Average Dan Exponential Smoothing Untuk Menyusun Perencanaan Produksi (Survei Pada Umkm Pembuatan Bordir Dan Pakaian, Nining Collection Di Ciamis),” Jurnal Ilmiah Multidisiplin, Vol. 1, No. 10, 2022.

4. S. Sinulingga, Perencanaan Dan Pengendalian Produksi, Edisi Pertama. Yogyakarta: Graha Ilmu, 2009.

5. T. Baroto, Perencanaan Dan Pengendalian Produksi, Edisi Pertama. Pejanten Barat Jakarta 12510: Ghalia Indonesia, 2002.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3