Neural Network Sales Revolution Outperforms Exponential Smoothing

Author:

Sari Safia Meilia,Sari Wulandari Indah Apriliana

Abstract

This research addresses the challenges faced by food manufacturing companies, focusing on UD. XYZ as a case study. With fluctuating sales levels causing raw material buildup and shortages, the study proposes an improved sales forecasting method to enhance raw material control. By comparing Artificial Neural Network (ANN) and Double Exponential Smoothing Holts, the research aims to optimize inventory management and production processes. Results indicate ANN's superiority over Holts, with an accuracy rate of 0.118 compared to 11.639. The ANN model accurately forecasts sales for the upcoming twelve-month period, highlighting a decline from July 2023 to May 2024. Implementing advanced forecasting methods can mitigate raw material-related risks and enhance operational efficiency for companies like UD. XYZ. Highlight:   Enhanced sales prediction methods crucial for inventory planning. Artificial Neural Network outperforms traditional forecasting techniques. Improved forecasting mitigates raw material shortages and excesses.   Keywoard: Sales forecasting, Artificial Neural Network, Raw material control, Inventory management, Production optimization.

Publisher

Universitas Muhammadiyah Sidoarjo

Reference22 articles.

1. A. Lusiana, P. Yuliarty, “Penerapan Metode Peramalan (Forecasting) Pada Permintaan Atap di PT X”, Jurnal Teknik Industri, vol. 10, no. 5, pp. 11-20, 2020.

2. B. W. N. Tantyo, D. Swanjaya, “Perbandingan Antara Metode Holt Winter Dan Backpropagation Pada Model Peramalan Penjualan” Jurnal Seminar Nasional Inovasi Teknologi, vol. 3, no, 1, pp. 174-181, 2021.

3. A. Dzulfikar, Iswanto, N. Ramsari, S. Sutjiningtyas, Hernawati, “Implementasi Peramalan Penjualan Produk di PT. Prima Per Tradea Utama Menggunakan Metode Artificial Neural Network”, Jurnal Teknologi Informasi dan Komunikasi, vol. 11, no. 2, pp.10-11, 2021.

4. I. Solikin, S. Hardini, “Aplikasi Forecasting Stok Barang Menggunakan Metode Weighted Moving Average (WMA) Pada Metrojaya Komputer”, Jurnal Pengembangan, vol. 4, no. 2, pp. 100-105, 2019, doi: 10.3059/jpt.v4i2.1373.

5. J. R. Saragih, M. B. S. Saragih, A. Wanto, “Analisis Algoritma Backpropagation Dalam Prediksi Nilai Ekspor (Juta USD)”, Jurnal Pendidikan Teknologi dan Kejuruan, vol. 15, no. 2, pp. 254-264, 2018, doi: https://ejournal.undiksha.ac.id/index.php/JPTK/issue/view/851.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3