Covid-19 Disease Detector Using X-Rays Based On Deep Learning

Author:

Mohammed Ali T.,Ghazi Hussein A.,Mahdi Mustaeen R.,Ali MohammedAlbaqer A. Abd,Fadhil Ahmed A.,Leebi Ali F.,Sahib Ali M.,Jebur Mohammed S.

Abstract

This study presents an automated deep learning approach for the rapid detection of COVID-19 using chest X-ray images. Given the urgent need for efficient disease diagnostics, we utilize convolutional neural networks (CNNs) to develop a ResNet-based classification model. Our dataset includes ten images, five depicting COVID-19 cases and five standard X-ray images, chosen for their rapidity and low radiation dose. The model demonstrates high accuracy, successfully classifying all images. Transfer learning techniques further enhance performance, indicating the potential for broader application and improved diagnostic capabilities. This research addresses the current knowledge gap in automated COVID-19 diagnostics, offering a reliable method for swift and accurate detection, with implications for enhancing disease management strategies. Highlights: Rapid COVID-19 detection using deep learning. High accuracy with convolutional neural networks. Quick results with low radiation in chest X-rays. Keywords: COVID-19, deep learning, chest X-ray, automated diagnosis, convolutional neural networks

Publisher

Universitas Muhammadiyah Sidoarjo

Reference34 articles.

1. S. Umbaugh, "Digital image processing and analysis: Human and computer vision applications with CVIP tools," 2nd ed. CRC Press, 2010.

2. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, "Digital image processing using MATLAB," 2nd ed. MedData Interactive, The MathWorks, Inc., Sep. 5, 2003.

3. S. N. Srihari, "Representation of three-dimensional digital images," ACM Computing Surveys (CSUR), vol. 13, no. 4, pp. 399-424, 1981.

4. G. T. Herman, "Image reconstruction from projections: Fundamentals of computerized tomography," 2nd ed. Springer Science & Business Media, 2009.

5. R. M. Zain, A. M. Razali, K. A. Salleh, and R. Yahya, "Image reconstruction of X-ray tomography by using Image J platform," *AIP Conference Proceedings*, vol. 1799, no. 1, pp. 050010(1-6), 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3