Optimization of Friction Stir Welding Parameters for AA6061-T651 Aluminum Alloy: Defect Analysis and Process Improvement

Author:

Mulyadi ,Firdaus Rachmat,Untari Rahmania Sri

Abstract

Friction Stir Welding (FSW) is an eco-friendly process known for high-quality joints without filler metal. This study investigated the physical properties of FSW-welded joints in AA6061-T651 aluminum alloy by varying the concave shoulder angle. Optimal process parameters were determined through Taguchi optimization using an Orthogonal Array design. Macro and micro testing revealed overlap defects, kissing bond defects, and wormholes in some samples. Systematic experimentation identified key parameters to avoid defects, including tool rotation speed, welding speed, tool tilt angle, tool indentation angle, and shoulder depth. Visual inspection and microstructural analysis played a crucial role in assessing weld quality. Optimizing welding parameters, such as rotational speed, welding speed, temperature, and tool geometry, was highlighted as crucial for defect-free joints. The study offers valuable insights for researchers and professionals in the field, promoting the advancement and application of FSW in aluminum alloy welding. Highlight: FSW: An environmentally friendly welding process with good joint quality. Defect Analysis: Identification of overlap defects, kissing bond defects, and wormholes in welded joints. Process Optimization: Determination of optimal parameters to avoid defects, including tool rotation speed, welding speed, tool tilt angle, tool indentation angle, and shoulder depth. Keyword: Friction Stir Welding, AA6061-T651 Aluminum Alloy, Welded Joint Analysis, Process Optimization, Defect Prevention

Publisher

Universitas Muhammadiyah Sidoarjo

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3