Inhibitory effect on subretinal fibrosis by anti-placental growth factor treatment in a laser-induced choroidal neovascularization model in mice

Author:

Zhang Yi, ,Wang Jian-Ming,Wang Li-Jun,Yang Xi-Ting,Zhou Ai-Yi, , , ,

Abstract

AIM: To investigate whether anti-placental growth factor (PGF) can inhibit subretinal fibrosis and whether this effect is mediated by the inhibitory effect of PGF on epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells. METHODS: Subretinal fibrosis model was established in laser induced choroidal neovascularization (CNV) mice on day 21 after laser photocoagulation. Immunofluorescence staining (IFS) of cryosections and enzyme-linked immunosorbent assay (ELISA) were used to detect the expression of PGF. IFS of whole choroidal flat-mounts was used to detect the degree of subretinal fibrosis. IFS of cryosections and ELISA were used to detect the expression of EMT related indicators in subretinal fibrosis lesions. RESULTS: The expression of PGF protein in subretinal fibrosis lesions was significantly up-regulated (P<0.05), and mainly co-stained with pan-cytokeratin labeled RPE cells. Intravitreal injection of anti-PGF neutralizing antibody reduced the area of subretinal fibrosis and the ratio of fibrotic/angiogenic area significantly at the concentrations of 0.25, 0.5, 1.0, and 2.0 μg/μL (all P<0.05). The expression of E-cadherin in the local RPE cells decreased, while α-SMA increased significantly in subretinal fibrosis lesions, and the application of anti-PGF neutralizing antibody could reverse these changes (P<0.05). CONCLUSION: The expression of PGF is up-regulated in the lesion site of subretinal fibrosis and mainly expressed in RPE cells. Intravitreal injection of anti-PGF neutralizing antibody can significantly inhibit the degree of subretinal fibrosis in CNV mice, and this effect may be mediated by the inhibition of PGF on EMT of RPE cells.

Publisher

Press of International Journal of Ophthalmology (IJO Press)

Subject

Ophthalmology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3