Preliminary studies of constructing a tissue-engineered lamellar corneal graft by culturing mesenchymal stem cells onto decellularized corneal matrix

Author:

Cen Yu-Jie, ,Wang Wei,Feng Yun, ,

Abstract

AIM: To construct a competent corneal lamellar substitute in order to alleviate the shortage of human corneal donor. METHODS: Rabbit mesenchymal stem cells (MSCs) were isolated from bone marrow and identified by flow cytometric, osteogenic and adipogenic induction. Xenogenic decellularized corneal matrix (XDCM) was generated from dog corneas. MSCs were seeded and cultured on XDCM to construct the tissue-engineered cornea. Post-transplantation biocompatibility of engineered corneal graft were tested by animal experiment. Rabbits were divided into two groups then underwent lamellar keratoplasty (LK) with different corneal grafts: 1) XDCM group (n=5): XDCM; 2) XDCM-MSCs groups (n=4): tissue-engineered cornea made up with XDCM and MSCs. The ocular surface recovery procedure was observed while corneal transparency, neovascularization and epithelium defection were measured and compared. In vivo on focal exam was performed 3mo postoperatively. RESULTS: Rabbit MSCs were isolated and identified. Flow cytometry demonstrated isolated cells were CD90 positive and CD34, CD45 negative. Osteogenic and adipogenic induction verified their multipotent abilities. MSC-XDCM grafts were constructed and observed. In vivo transplantation showed the neovascularization in XDCM-MSC group was much less than that in XDCM group postoperatively. Post-transplant 3-month confocal test showed less nerve regeneration and bigger cell-absent area in XDCM-MSC group. CONCLUSION: This study present a novel corneal tissue-engineered graft that could reduce post-operatively neovascularization and remain transparency, meanwhile shows that co-transplantation of MSCs may help increase corneal transplantation successful rate and enlarge the source range of corneal substitute to overcome cornea donor shortage.

Publisher

Press of International Journal of Ophthalmology (IJO Press)

Subject

Ophthalmology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3