Nomogram to predict severe retinopathy of prematurity in Southeast China

Author:

,Liu Dan,He Hong-Wu, ,Jin Ka-Lu, ,Zhang Ling-Xia, ,Zhou Yang, ,Zhu Zhi-Min, ,Jiang Chen-Chen, ,Wu Hai-Jian, ,Zheng Sui-Lian,

Abstract

AIM: To define the predictive factors of severe retinopathy of prematurity (ROP) and develop a nomogram for predicting severe ROP in southeast China. METHODS: Totally 554 infants diagnosed with ROP hospitalized in the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University and hospitalized in Taizhou Women and Children’s Hospital were included. Clinical data and 43 candidate predictive factors of ROP infants were collected retrospectively. Logistic regression model was used to identify predictive factors of severe ROP and to propose a nomogram for individual risk prediction, which was compared with WINROP model and Digirop-Birth model. RESULTS: Infants from the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University (n=478) were randomly allocated into training (n=402) and internal validation group (n=76). Infants from Taizhou Women and Children’s Hospital were set as external validation group (n=76). Severe ROP were found in 52 of 402 infants, 12 of 76 infants, and 7 of 76 infants in training group, internal validation group, and external validation group, respectively. Birth weight [odds ratio (OR), 0.997; 95% confidence interval (CI), 0.996-0.999; P<0.001], multiple births (OR, 1.885; 95%CI, 1.013-3.506; P=0.045), and non-invasive ventilation (OR, 0.288; 95%CI, 0.146-0.570; P<0.001) were identified as predictive factors for the prediction of severe ROP, by univariate analysis and multivariate analysis. For predicting severe ROP based on the internal validation group, the areas under receiver operating characteristic curve (AUC) was 78.1 (95%CI, 64.2-92.0) for the nomogram, 32.9 (95%CI, 15.3-50.5) for WINROP model, 70.2 (95%CI, 55.8-84.6) for Digirop-Birth model. In external validation group, AUC of the nomogram was also higher than that of WINROP model and Digirop-Birth model (80.2 versus 51.1 and 63.4). The decision curve analysis of the nomogram demonstrated better clinical efficacy than that of WINROP model and Digirop-Birth model. The calibration curves demonstrated a good consistency between the actual severe ROP incidence and the predicted probability. CONCLUSION: Birth weight, multiple births, and non-invasive ventilation are independent predictors of severe ROP. The nomogram has a good ability to predict severe ROP and performed well on internal validation and external validation in southeast China.

Publisher

Press of International Journal of Ophthalmology (IJO Press)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3