Inhibition of EGFR attenuates EGF-induced activation of retinal pigment epithelium cell via EGFR/AKT signaling pathway

Author:

,Zhu Yu-Sheng,Zhang Hui-Hui, ,Wang Tong, ,Chen Xiao-Dong,

Abstract

AIM: To explore the effect of epidermal growth factor receptor (EGFR) inhibition by erlotinib and EGFR siRNA on epidermal growth factor (EGF)-induced activation of retinal pigment epithelium (RPE) cells. METHODS: Human RPE cell line (ARPE-19 cells) was activated by 100 ng/mL EGF. Erlotinib and EGFR siRNA were used to intervene EGF treatment. Cellular viability, proliferation, and migration were detected by methyl thiazolyl tetrazolium (MTT) assay, bromodeoxyuridine (BrdU) staining assay and wound healing assay, respectively. EGFR/protein kinase B (AKT) pathway proteins and N-cadherin, α-smooth muscle actin (α-SMA), and vimentin were tested by Western blot assay. EGFR was also determined by immunofluorescence staining. RESULTS: EGF treatment for 24h induced a significant increase of ARPE-19 cells’ viability, proliferation and migration, phosphorylation of EGFR/AKT proteins, and decreased total EGFR expression. Erlotinib suppressed ARPE-19 cells’ viability, proliferation and migration through down regulating total EGFR and AKT protein expressions. Erlotinib also inhibited EGF-induced an increase of proliferative and migrative ability in ARPE-19 cells and clearly suppressed EGF-induced EGFR/AKT proteins phosphorylation and decreased expression of N-cadherin, α-SMA, and vimentin proteins. Similarly, EGFR inhibition by EGFR siRNA significantly affected EGF-induced an increase of cell proliferation, viability, and migration, phosphorylation of EGFR/AKT proteins, and up-regulation of N-cadherin, α-SMA, and vimentin proteins. CONCLUSION: Erlotinib and EGFR-knockdown suppress EGF-induced cell viability, proliferation, and migration via EGFR/AKT pathway in RPE cells. EGFR inhibition may be a possible therapeutic approach for proliferative vitreoretinopathy (PVR).

Publisher

Press of International Journal of Ophthalmology (IJO Press)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3