Diabetic retinopathy identification based on multi-source-free domain adaptation

Author:

,Zhang Guang-Hua,Zhang Zhao-Xia, ,Sun Bin, ,Yang Wei-Hua, ,Zhang Shao-Chong,

Abstract

AIM: To address the challenges of data labeling difficulties, data privacy, and necessary large amount of labeled data for deep learning methods in diabetic retinopathy (DR) identification, the aim of this study is to develop a source-free domain adaptation (SFDA) method for efficient and effective DR identification from unlabeled data. METHODS: A multi-SFDA method was proposed for DR identification. This method integrates multiple source models, which are trained from the same source domain, to generate synthetic pseudo labels for the unlabeled target domain. Besides, a softmax-consistence minimization term is utilized to minimize the intra-class distances between the source and target domains and maximize the inter-class distances. Validation is performed using three color fundus photograph datasets (APTOS2019, DDR, and EyePACS). RESULTS: The proposed model was evaluated and provided promising results with respectively 0.8917 and 0.9795 F1-scores on referable and normal/abnormal DR identification tasks. It demonstrated effective DR identification through minimizing intra-class distances and maximizing inter-class distances between source and target domains. CONCLUSION: The multi-SFDA method provides an effective approach to overcome the challenges in DR identification. The method not only addresses difficulties in data labeling and privacy issues, but also reduces the need for large amounts of labeled data required by deep learning methods, making it a practical tool for early detection and preservation of vision in diabetic patients.

Publisher

Press of International Journal of Ophthalmology (IJO Press)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3