Energy Transfer Process and Process Gas Flow Model in Nitric Acid Production
Author:
İKBAL MenekşeORCID, ERBAŞ Oğuzhan1ORCID, AYDIN Özer2ORCID
Affiliation:
1. DUMLUPINAR ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 2. KÜTAHYA DUMLUPINAR ÜNİVERSİTESİ
Abstract
In the Oswald process, ammonia is reacted with oxygen under the catalyst of platinum to form oxides, which are converted into acid. Acid nitriding processes are essential in industry, and many kinds of products, such as plastics, paints, and explosives, are obtained this way. Achieving energy savings and improving production reflexes by monitoring energy consumption on a process basis in such enterprises requires defining the current process flows and structure through a model and analyzing them with parameter changes. In this study, the energy transfer process of NOx gases obtained in the ammonia oxidation reactor and used as process gas in a nitric acid production facility and the parameters affecting the process were investigated. The parameters affecting the efficiency were determined. The problems were addressed by considering the energy efficiency of the facility. The ammonia oxidation reactor is the most essential part of the system. For this reason, the operating parameters of the old reactors in the facility were compared with the revised new reactors. After the revision, the efficiency and performance of the system were examined in old and new reactors. In addition, the flow and hydrodynamic structure of the existing process gas in the new reactors were reviewed with the ANSYS Fluent program, that is, CFD analysis.
Publisher
Kirklareli Universitesi Muhendislik ve Fen Bilimleri Dergisi
Reference16 articles.
1. Mellor, J. W. (1922). Supplement to Mellor's Comprehensive Treatise on Inorganic and Theoretical Chemistry: suppl. 3. K, Rb, Cs, Fr.Dary, G., (1913) The Production of Nitrates by the Direct Electrolysis of Peat Deposits , London Electrical Review, 73: 1020-1021. 2. Modak, J. M. (2002). Haber process for ammonia synthesis. Resonance, 7(9), 69-77. Chernyshev, V. I., & Zjuzin, S. V. (2001). Improved start-up for the ammonia oxidation reaction. Platinum Metals Review, 45(1), 22-30. 3. NurSulihatimarsyila A. W., Chuah T.G., Choong S. Y., Thayananthan.B (2005) Estimation of Platinum Gauzes Catalyst for Ammonia Oxidation of Nitric Acid Production, The Institution of Engineers, Malaysia Volume 66, Issue 4. 4. Moszowski, B., Wajman, T., Sobczak, K., Inger, M., & Wilk, M. (2019). The analysis of distribution of the reaction mixture in ammonia oxidation reactor. Polish Journal of Chemical Technology, 21(1), 9-12. 5. Ardy, H., Putra, Y. P., Anggoro, A. D., & Wibowo, A. (2021). Failure analysis of primary waste heat boiler tube in ammonia plant. Heliyon, 7(2).
|
|