A TWO-STEP CLUSTER FOR CLASSIFYING PROVINCES IN INDONESIA BASED ON ENVIRONMENTAL QUALITY

Author:

Mahmudah Umi,Lola Muhamad Safiih

Abstract

The main objective of this study was to conduct a cluster analysis of the environmental health index in Indonesia for all the provinces. Clustering the environmental health index was important to reveal regional disparities, target and intervention policies, monitor progress over time, and allocate resources more effectively for improved environmental health outcomes. In this study, a sample of 34 units was utilized, encompassing all provinces in Indonesia. The environmental health index was clustered based on five indicators, namely Water Quality Index, Air Quality Index, Soil Quality Index, Marine Quality Index, and Land Cover Quality Index. This research used the two-stage clustering method, which was unique in combining both hierarchical and non-hierarchical clustering methods to produce a more accurate and reliable solution. Four clusters were determined to group provinces in Indonesia based on the environmental health index. The analysis found that the quality of clustering was in the fair but close to good category. The clustering results showed that 32% of the provinces were in cluster 4 and 26.5% of the provinces were in cluster 1. Then, 23.5% and 17.6% of the provinces were in clusters 2 and 3, respectively. In addition, two indicators were found to be the most predictive of the overall clustering solution, namely the Soil Quality Index and the Land Cover Quality Index. The results also implied that provinces in cluster 3 had the lowest environmental quality so they must improve it by looking at provinces in cluster 4, which was the group with the best environmental quality index.

Publisher

Universitas Pattimura

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Environmental and Economic Clustering of Indonesian Provinces: Insights from K-Means Analysis;Leuser Journal of Environmental Studies;2024-04-29

2. Application of K-Means Algorithm for Clustering Regions Based on Sanitation Level: A Case Study in Bangka Regency, Indonesia;2023 Sixth International Conference on Vocational Education and Electrical Engineering (ICVEE);2023-10-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3