Potential Role of Intercellular Communication in the Rate-Limiting Step in Carcinogenesis

Author:

Trosko James E.1,Chang Chia-cheng1

Affiliation:

1. Department of Pediatrics and Human Development Division of Human Genetics, Genetic Toxicology, Endocrinology and Oncology. Michigan State University

Abstract

In order to ascertain whether there might be a scientific basis for determining practical “thresholds” for “carcinogens,” the concepts of thresholds and carcinogens were examined in the context of some current ideas on cardnogenesis. The observation that cardnogenesis seems to involve the donal expansion of a pre-malignant cell through a series of pheno-typic changes was explained by the initiation/promotion model of cardnogenesis. Unrepaired DNA lesions, acting as substrates for mutations in dividing cells, were speculated to play a role in the initiation phase of cardnogenesis (and indirectly to the promotion phase if the lesions lead to significant cell killing, forcing “compensatory hyperplasia”). Inhibition of intercellular communication, either by cell removal, cell death, growth factors or chemical promoters, was speculated to allow the donal expansion of initiated cells to reach a “critical mass.” During that donal expansion of initiated cells, additional phenotypic changes were speculated to occur during cell replication by mutational and/or epigenetic events. Therefore, it was concluded, on the basis of this model, that conditions which prevented the inhibition of intercellular communication between normal cells and the initiated cell(s) contributed to the rate limiting step of cardnogenesis.Assuming the initiation and promotion model of cardnogenesis, the classical concepts of “thresholds” and “carcinogens” were viewed as grossly inadequate because they did not symbolically represent the known determinants of the complex carcinogenic process. Unless genetic, developmental stage, tissue, nutritional, stress, life style, as well as concurrent antagonists and/or synergists, factors are known, extrapolation about the potential carcinogenicity of a given chemical from molecular, in vitro or even in vivo experiments or epidemiological data would be extremely risky. It was concluded that, at this stage of our understanding of the mech-anism(s) of carcinogenesis, attempts to determine “thresholds” for “carcinogens” naively assume “carcinogens” are the single determinants for carcinogenesis, and that all chemicals which might influence the appearance of tumors act the same way.

Publisher

SAGE Publications

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3