Chromium(VI) Toxicity: Uptake, Reduction, and DNA Damage

Author:

Standeven Andrew M.1,Wetterhahn Karen E.1

Affiliation:

1. Department of Chemistry, Steele Hall Dartmouth College Hanover, NH 03755

Abstract

Much recent data supports the “uptake-reduction” model explaining the carcinogenicity of chromium(VI) compounds and the lack of carcinogenicity of chromium(III) com pounds. Cr(VI) readily enters cells by diffusion through a nonspecific anion channel, whereas cells are relatively impermeable to Cr(III). Glutathione appears to facilitate Cr(VI) uptake by reducing Cr(VI) to Cr(III) after it enters the cell, presumably keeping intracellular Cr(VI) concentration low and allowing for further Cr(VI) uptake. Some other nonenzymatic factors, for example, ascorbate and riboflavin, as well as enzymes, such as cytochrome P-450, DT-diaphorase, and the mitochondrial electron transport chain complexes, are capable of reducing Cr(VI) in vitro, but their contribution in vivo is not clear. Cr(VI), once reduced intracellularly, produces various forms of DNA damage including DNA interstrand crosslinks, DNA-protein crosslinks, DNA strand breaks, and Cr-DNA adducts. The pathway of Cr(VI) metabolism in different tissues appears to influence the type of “reactive intermediates” produced, for example, Cr(V) and radical species, and thus the nature and extent of DNA damage. This DNA damage presumably accounts for observed functional changes in DNA replication and transcription which may be crucial to the carcinogenicity of chromium(VI) compounds.

Publisher

SAGE Publications

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3