Abstract
Background: Multidrug-resistant (MDR) Acinetobacter baumannii is one of the most common nosocomial pathogens. Antimicrobial peptides (AMPs) have been introduced as a viable alternative to antibiotics in the treatment of MDR pathogens. Objectives: This study was designed to assess the in vitro pharmacokinetics of the combination of two potent AMPs, LL-37 and oncorhyncin II, against A. baumannii (ATCC19606). Methods: The synthesized genes of oncorhyncin II and LL-37 were introduced into Escherichia coli BL21 as the expression host. The minimum inhibitory concentration (MIC), time-kills, and growth kinetics of these peptides were used to evaluate their antimicrobial efficiencies against A. baumannii (ATCC19606). Results: LL-37 and oncorhyncin II recombinant peptides showed MIC of 30.6 and 95.87 µg/mL against A. baumannii, respectively. Additive action was confirmed by combining the generated AMPs at the checkerboard approach. The combination of LL-37 and oncorhyncin II at 2 × MIC resulted in a rapid drop in log10 CFU/mL of A. baumannii in the time-kill and growth kinetic findings studies. Conclusions: The combination of the produced LL-37 and oncorhyncin II synergizes the bioactivity of the individual peptides. Therefore, these peptides or their combinations might function as novel antibiotics and be used to develop and produce new antimicrobial drugs for the treatment of infections caused by A. baumannii.
Subject
Infectious Diseases,Microbiology (medical),Microbiology