Predicting Factors Affecting Lymph Node Involvement in Breast Cancer Using Random Forest Approaches

Author:

Zamaninasab FatemehORCID,Fendereski AfsanehORCID,Zamaninasab ZahraORCID,Godazandeh GholamaliORCID,Yazdani Charati JamshidORCID

Abstract

Objectives: The objective of this study was to utilize random forest methodology to develop a practical diagnostic function for predicting lymph node metastasis in patients diagnosed with breast cancer. Methods: The research data of this retrospective cohort study was obtained through a comprehensive analysis of telephone interviews and medical records of 241 patients with breast cancer referred to the hospitals affiliated with Mazandaran University of Medical Sciences between 2016 and 2022. The data analysis method used in this study was random forest analysis to identify the influential factors associated with lymph node metastasis using R software. Results: The mean age of diagnosis for patients was 52.03 ± 10.932. Based on the random forest analysis outcomes, an accuracy rate of 72.2% has been attained. The influential factors in our study included grade, tubule formation, skin involvement, p53 marker, margin involvement, nuclear pleomorphism, Ki67, tumor location, estrogen receptor (ER), and (progesterone receptor) PR markers. These factors were determined to have a significant impact based on the mean accuracy reduction index. Furthermore, the variables that demonstrated significance based on the mean Gini reduction index included age, grade, tubule formation, tumor size, nuclear pleomorphism, disease level, mitosis, skin involvement, tumor location, and margin involvement. Conclusions: The utilization of the random forest algorithm, which demonstrates a favorable level of discriminative capability, may serve as a suitable approach for predicting metastasis in patients with breast cancer. Furthermore, by identifying these factors, experts can employ effective strategies to mitigate the condition.

Publisher

Briefland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3