Isolation and Identification of Resistant Microorganisms from Automotive Paint Sludge

Author:

Honarjooy Barkusaraey Fatemeh,Mafigholami Roya,Faezi Ghasemi Mohammad,Khayati Gholam

Abstract

Background: Paint coating systems are widely implemented on different surfaces for both aspects of decoration and protection against corrosion. Due to the presence of organic compounds, the growth of microorganisms is more likely to take place in paints, such as automotive paint. In the process of automotive painting, 20% - 60% of the paint does not expose to the automotive body, which is washed using water and would lead to the painting sludge formation. Paint sludge is considered one of the hazardous wastes from the automotive industry, which is finally landfilled or incinerated. Objectives: Despite the presence of inhibiting compounds in paint sludge, such as heavy metals and biocides, the objective of this study was to isolate and identify microorganisms in the sludge culture. Methods: The microorganisms were isolated using serial dilutions, direct cultivation, and enrichment methods in basic salt cultivation media. Then, their biochemical and molecular specifications were investigated. Results: The number of microorganisms counted in paint sludge was approximately around 1 × 104 CFU/mL, and six isolated colonies were finally obtained. Conclusions: The main isolated microbial consortium from paint sludge included Pseudomonas aeruginosa, Staphylococcus haemolyticus, Micrococcus yunnanensis, Rothia amarae, Gordonia terrae, and Brevibacillus agri. Nearly 83% of the isolated strains were Gram-positive.

Publisher

Briefland

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3