Green Copper Carbonate Nanoparticles Produced by the Ureolytic Fungus Alternaria sp. Strain ccf7 and Their Antibacterial Activity

Author:

Ashengroph MorahemORCID,Rabiei Zahra

Abstract

Background: Copper carbonate nanoparticles have several applications in the fields of pigments, insecticides, and fungicides. They are also used as catalysts in chemical processes and crude oil desulfurization. Fungi can biosynthesize metal nanoparticles due to their high tolerance, extracellular synthesis, simplicity of extraction, and large-scale exploitation. Objectives: This study aimed to investigate the potential of fungal isolates (which are resistant to copper chloride with urease activity) as biocatalysts for the synthesis of copper carbonate nanoparticles. This approach was considered due to the advantages of using fungal isolates in nanoparticle biosynthesis. Methods: In a PDA culture medium with 25 mM copper chloride, an enrichment culture was used to isolate copper-resistant fungal isolates. Fungal isolates’ urease enzyme was qualitatively assessed using 2% urea agar-based culture media. Studies on the synthesis of copper carbonate nanoparticles and the effect of different parameters on the synthesis of these nanoparticles were conducted using a mycelium-free supernatant strategy. Field emission scanning electron microscope (FESEM), dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR) studies were used to determine the properties of calcium carbonate nanoparticles. The selected fungal isolate was identified using macroscopic and microscopic characteristics, as well as molecular analysis using amplification of the ITS1-5.8S-ITS2 gene sequences. Results: Alternaria sp. strain ccf7 (GenBank accession number OP242500) was chosen as the superior strain for copper carbonate nanoparticle synthesis tests based on the pattern of resistance to copper chloride salt and the qualitative assessment of urease activity. Based on the findings of the electron microscope studies, spherical copper carbonate nanoparticles with an average size of 66.7 nm were synthesized after 24 hours of incubation at the optimal concentration of 45 mM copper chloride, temperature of 25°C, and shaker speed of 100 rpm. The distribution of the produced nanoparticles was appropriate, as indicated by a polydispersity index (PDI) of 0.25. The strongest inhibitory impact of these copper carbonate nanoparticles was against Pseudomonas aeruginosa, with an average inhibition of 31 mm at a concentration of 50 mg/L, according to the results of their antibacterial activities. Conclusions: For the first time, the synthesis and development of a green approach for the fabrication of copper carbonate nanoparticles using the genus Alternaria have been proposed in this study.

Publisher

Briefland

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3