Comparison of Genomic and Episomal Expression of Recombinant Human Growth Hormone in Escherichia coli

Author:

Moein Jahromi ElhamORCID,Deldar Ali AsgharORCID,Shahali MaryamORCID

Abstract

Background: The production of recombinant human growth hormone is usually problematic in Escherichia coli, and achieving higher functional protein yields is economically important. Objectives: In this study, the chromosomal expression of recombinant human growth hormone (hGH) in the araBAD operon was investigated using Rosetta-gami and BL21 (DE3) competent cells under the regulation of arabinose and T7 promoters using arabinose inducer and IPTG, respectively. Subsequently, the expression of the plasmid-based protein was examined using pET28 (a) + plasmid in Rosetta-gami under the T7 promoter, and the results were compared. Methods: The lambda red technique was used to integrate the desired gene into the host genome. The Fh8 tag was used to increase the protein’s expression, solubility, and thermal resistance. Results: The recombinant BL21 (DE3) under the T7 promoter and the recombinant Rosetta-gami containing pET28-Fh8-hGH plasmid showed significant expression among the chromosome-based and plasmid-based strains, respectively. Preliminary studies on the solubility and thermal resistance of the produced proteins indicated the efficacy of the Fh8 tag in increasing the expression, solubility, and thermal resistance of the product. Conclusions: One advantage of the genomic expression approach is the stability of the gene in the genome. Also, the lack of the need to use antibiotics in production systems can effectively reduce the production costs of this widely used hormone. In addition, the presence of the Fh8 tag can facilitate and accelerate its purification process by increasing the heat resistance thermostability of growth hormone.

Publisher

Briefland

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3