Antibacterial Agent of Echinochloa esculenta-Mediated ZnO Nanoparticles on Urinary Infection-Causing Bacteria

Author:

Stella Bharathy Moses,Dayana Jeyaleela Gnana Sekar,Rosaline Vimala Joseph Devaraj,Agila Aranganathan,Divya Arockiya raj

Abstract

Background: Echinochloa esculenta is the Indian Barnyard millet which is a grass type of species. This study focused on the evaluation of the antibacterial activity of Echinochloa esculenta-mediated zinc oxide nanoparticles (ZnONPs) against urinary tract infection (UTI) microbes, such as Escherichia coli (E. coli), Enterobacter aerogenes, Pseudomonas aeruginosa, Staphylococcus aureus, and Proteus vulgaris. Methods: The millet Echinochloa esculenta-mediated ZnONPs are synthesized using a green method. Synthesized ZnONPs are characterized by ultraviolet (UV), Fourier transform-infrared resonance spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX) to determine the functional groups, crystalline size, shape, and elemental composition of the synthesized NPs. Results: The UV and FTIR results of Echinochloa esculenta-mediated ZnONPs preliminarily confirmed the formation of ZnONPs. The XRD and SEM results also confirmed that the synthesized ZnONPs are well-crystalline in nature, and the average size was observed to be 23.38 nm with a spherical shape. Echinochloa esculenta-mediated ZnONPs contained 73.33% of zinc and 26.77% of oxygen, which was examined by EDX. Synthesized ZnONPs were tested against the five UTI pathogens, and they exhibited a greater zone of inhibitions than zinc acetate and plant extract. Especially against S. aureus, Echinochloa esculenta-mediated ZnONPs performed well with an inhibitory effect. Conclusions: Therefore, this study had the potential value of developing new eco-friendly, low-cost, and less toxic nanomaterials that can be used as a bio-control for diseases.

Publisher

Briefland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3