The Effect of Donor Rat Gender in Mitochondrial Transplantation Therapy of Cisplatin-Induced Toxicity on Rat Renal Proximal Tubular Cells

Author:

Arjmand Abdollah,Faizi Mehrdad,Rezaei Mohsen,Pourahmad Jalal

Abstract

Background: Cisplatin-induced nephrotoxicity has been linked to a fundamental mechanism of mitochondrial dysfunction. A treatment called mitochondrial transplantation therapy can be used to replace damaged mitochondria with healthy mitochondria. Mitochondrial-related diseases may benefit from this approach. Objectives: We investigated the effect of mitochondrial transplantation on cisplatin-induced nephrotoxicity using freshly isolated mitochondria obtained from renal proximal tubular cells (RPTCs). Methods: Based on our previous findings, we hypothesized that direct exposure of healthy mitochondria to cisplatin-affected RPTCs might improve cytotoxicity markers and restore mitochondrial function. Therefore, the primary objective of this study was to determine whether newly isolated mitochondrial transplantation protected RPTCs from cisplatin-induced cytotoxicity. The supply of exogenous rat kidney mitochondria to cisplatin-affected RPTCs was also a goal of this study to investigate the possibility of gender differences. After the addition of cisplatin (100 µM), rat RPTCs (106 cells/mL) were suspended in Earle’s solution (pH = 7.4) at 37°C for two hours. Freshly isolated mitochondria were extracted at 4°C and diluted in 100 and 200 µg/mL mitochondrial protein. Results: Statistical analysis revealed that transplantation of healthy mitochondria decreased ROS level, mitochondrial membrane potential (MMP) collapse, MDA level, glutathione depletion, lysosomal membrane damage, and caspase-3 activity induced by cisplatin in rat RPTCs. In addition, our results demonstrated that transplantation of female rat kidney mitochondria has higher protective activity at reducing toxicity parameters than male mitochondria. Conclusions: The findings reaffirmed that mitochondrial transplantation is a novel, potential, and promising therapeutic strategy for xenobiotic-induced nephrotoxicity.

Publisher

Briefland

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3