Decoding Selective Attention and Cognitive Control Processing Through Stroop Interference Effect: An Event-Related Electroencephalography-Derived Study

Author:

Kamali-Ardekani RaziehORCID,Tavakkoli Neishabouri Alireza,Rabiei MojtabaORCID,Alizadeh MohammadrezaORCID,Yoonessi AliORCID,Shafaghi LidaORCID,Hadjighassem Mahmoudreza

Abstract

Background: The process of cognitive control and resultant selective attention construct the shared root of a continuum of neurocognitive functions. Efficient inhibition of task-irrelevant information and unwanted attributes has been evaluated through various paradigms. Stroop tasks in different forms could provide a platform for detecting the state of this type of inhibition and selective attention. Computational modeling of electroencephalography (EEG) signals associated with attentional control could complement the investigations of this discipline. Objectives: We used a machine learning-based classification to examine whether earlier or later epochs are more representative. So, through the present preliminary investigation, Gaussian SVM models were trained on the early (150 - 300 ms) and late (350 - 500 ms) intervals. Methods: Ninety-six trials of a three-condition Color-Word Stroop task were performed while recording EEG. All subjects (9 participants) were right-handed (20 - 25 years), and half were male. Three-condition signal epochs were redefined as two conditions: (1) differentiated incongruent epochs (DIe), which are incongruent epochs that their equivalent congruent epochs are subtracted from and (2) neutral epochs, in which intervals of 150 - 300 ms and 350 - 500 ms post-stimulus were extracted. Preprocessed data were then analyzed, and the whole EEG epoch was considered the variable to be compared between conditions. An acceptably fitted support vector machine (SVM) algorithm classified the data. Results: For each individual, the comparison was made regarding DIe and neutral epochs for two intervals (150 - 300 and 350 - 500 ms). The SVM classification method provided acceptable accuracies at 59 - 65% for the 150 - 300 ms interval and 65 - 70% for the 350 - 500 ms interval within individuals. Regarding frequency domain assessments, the Delta frequency band for these two intervals showed no significant difference between the two conditions. Conclusions: The SVM models performed better for the late event-related epoch (350 - 500 ms) classification. Hence, selective attention-related features were more significant in this temporal interval.

Publisher

Briefland

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3