Modeling Suicide Attempt: A Population-Based Case-Control Study

Author:

Fallah SaeidORCID,Mehrabi YadollahORCID,Vakili MohammadaliORCID,Derakhshanpour FiroozehORCID,Hashemi Nazari Seyed SaeedORCID

Abstract

Background: Suicide risk factors can be used to develop tools for suicide attempt prediction and prevention. Objectives: We aimed to design a model to evaluate the risk of suicide related to socio-economic, demographic, health, and drug dependency factors. Methods: This case-control study was conducted in a 15-65-year-old population of Golestan province, Iran. The case group included 414 individuals with a history of suicide in 2019, and the control group had 408 individuals without suicide attempts. Demographic, psychosocial health, and drug dependency data were collected. Modeling was carried out using multivariate logistic regression. The performance of suicide-predicting models was assessed, and a nomogram for the probability of suicide was drawn. Results: A multivariate logistic regression model with age, gender, education level, mother's education level, marital status, life satisfaction, membership in cyberspace, sleep disorders, alcohol abuse, having suicidal thoughts, the interaction of gender with life satisfaction, and the interaction of gender with mother's education level was the best predicting model of suicide attempt (AUC = 0.934, CI: 0.91 - 0.95). The variables of father's education level, occupation, job satisfaction, household size, financial status, regular exercise, guardianship status, history of self-harm, history of suicide attempt in the family, smoking and drug abuse had no significant relationship with suicide attempt. 5.1. Conclusions: The results suggest that designed models can help mental health service providers to identify high-risk individuals early. So we can better manage suicide and reduce its economic, social, and health burdens.

Publisher

Briefland

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3