Anesthetic Management Recommendations Using a Machine Learning Algorithm to Reduce the Risk of Acute Kidney Injury After Cardiac Surgeries

Author:

Abin Ahmad AliORCID,Molla Ahmad,Ejmalian AzarORCID,Nabavi ShahabedinORCID,Memari Behnaz,Fani Kamal,Dabbagh AliORCID

Abstract

Background: Open heart surgeries are a common surgical approach among patients with heart disease. Acute kidney injury (AKI) is one of the most common postoperative complications following cardiac surgeries, with an average incidence of 6 - 10%. Additionally, AKI has a mortality rate of 5 - 10%. One of the challenges of cardiac surgeries is selecting the appropriate anesthetic approaches to reduce the risk of AKI. Objectives: This study presents a machine learning-based method that consists of two regression models. These models can inform the anesthesiologist about the risk of AKI resulting from the improper selection of anesthetic parameters. Methods: In this cohort study, the medical records of 998 patients who underwent cardiac surgery were collected. The proposed method includes two regression models. The first regression model recommends optimal anesthesia parameters to minimize the risk of AKI. The second model provides the anesthesiologist with the safest margin for deciding on anesthetic parameters during surgery, including cardiopulmonary bypass (CPB) time, anesthesia time, crystalloid dose, diuretic dose, and transfusion of packed red cells (PC) and fresh frozen plasma (FFP). Using this method, the specialist can evaluate the anesthetic parameters and assess the potential AKI risk. Additionally, the proposed method can also provide the treatment team with anesthetic parameters that carry the lowest risk of AKI. Results: This method was evaluated using data from 526 patients who suffered from postoperative AKI (AKI+) and 472 who did not suffer any injury (AKI-). The accuracy of the proposed method is 80.6%. Additionally, the evaluation of the proposed method by three experienced cardiac anesthesiologists shows a high correlation between the results of the proposed method and the opinions of the anesthesiologists. Conclusions: The results indicated that the outputs of the proposed models and the designed software could help reduce the risk of postoperative AKI.

Publisher

Briefland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3