Genotyping of Extended Spectrum Beta-Lactamase-Producing Pseudomonas aeruginosa Isolated from People with Nosocomial Infections

Author:

Rouhi Samaneh,Mohajeri Parviz,Ramazanzadeh RashidORCID

Abstract

Background: Pseudomonas aeruginosa nosocomial infections are among major problems associated with increased mortality and mobility among patients. Objectives: The aim of this research was to determine the molecular epidemiology of extended spectrum beta-lactamase (ESBL)-producing P. aeruginosa genotypes isolated from patients with nosocomial infections. Methods: One hundred forty-six clinical isolates of Pseudomonas spp. were obtained from a tertiary referral hospital. Phenotypic identification and PCR detection of gyrB were used to characterize P. aeruginosa. Extended spectrum beta-lactamases in samples were identified using the disk approximation test and the combination disk test (CDT). The blaSHV and blaTEM genes were detected by PCR. The strains were typed by the pulse field gel electrophoresis (PFGE), repetitive element sequence (Rep)-PCR, and enterobacterial repetitive intergenic consensus (ERIC)–PCR methods. Results: A total of 134 (91.78%) P. aeruginosa isolates were separated, 41.79% of whom were related to nosocomial infections. The extended spectrum beta-lactamase analysis test revealed that 5.97% and 66.41% of the isolates harbored the blaSHV and blaTEM genes, respectively. Enterobacterial repetitive intergenic consensus PCR, Rep-PCR, and PFGE each showed 56, 55, and 55 different patterns, respectively. Pulse-field gel electrophoresis indicated that pulso types C3 were dominant. Conclusions: The associations between ESBL production, blaSHV and blaTEM positivity, and ERIC, Rep-PCR, and PFGE patterns were not significant (P ≥ 0.05). Among nosocomial infections, a relatively high prevalence of ESBL-producing P. aeruginosa isolates was observed in the Kurdistan province of Iran. Periodic review of antibiotic resistance and molecular characterization of P. aeruginosa isolates is recommended to prevent the spread of nosocomial infections in hospitals.

Publisher

Briefland

Subject

Infectious Diseases,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3