Improvement of Bone Age Assessment Using a Deep Learning Model in Young Children: Significance of Carpal Bone Analysis

Author:

Kim Sang-UnORCID,Oh SaelinORCID,Lee Kee-Hyoung,Kang Chang Ho,Ahn Kyung-Sik

Abstract

Background: Deep learning methods used for bone age assessment (BAA) mostly employ the whole hand or regional convolutional neural networks without carpal bones; therefore, their application is insufficient in young children. Objectives: This study aimed to improve the accuracy of BAA in young children by integrating a carpal bone analysis and to achieve a similar BAA accuracy for all age groups. Patients and Methods: A hybrid Greulich-Pyle (GP) and modified Tanner-Whitehouse deep learning model for BAA was trained by integrating an additional carpal bone analysis of an open dataset. A total of 453 hand radiographs from a single institution were selected for external validation. To create the reference standard, three human experts conducted a BAA, based on the GP Atlas, and then, interobserver agreement was evaluated. The model performance was estimated by comparing the mean absolute difference (MAD) and the root mean square error (RMSE) between the two BAA models, including one with a carpal bone analysis (M1) and one without a carpal bone analysis (M2), and the reference standard. The MAD of each model was compared between sex and age groups with respect to four major developmental stages, that is, pre-puberty, early and mid-puberty, late puberty, and post-puberty. Results: The M1 model showed a higher accuracy with a lower MAD (0.366; 95% confidence interval [CI]: 0.337 - 0.395) compared to the M2 model (0.388; 95% CI: 0.358 - 0.418) for all age groups, with a significant difference (P < 0.001). The RMSE values versus the reference standard were 0.483 and 0.505 years for the M1 and M2 models, respectively. According to sex and developmental stage distributions, the M1 model had a greater predictive ability compared to the M2 model for pre-pubertal patients, regardless of sex (P = 0.008 for males and P = 0.022 for females). Conclusion: Based on the present findings, the integration of a carpal bone analysis into the BAA model improved its accuracy, especially in young children.

Publisher

Briefland

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3