Author:
Wu Jing,Peng Wanshu,Peng Taisong,Xu Zhigao,Ye Ziqing
Abstract
Background: Most brain gliomas are high-grade and likely to spread locally. Consequently, these patients commonly have a poor prognosis. Accurate identification of the malignancy grade of brain glioma before treatment is of great clinical significance. Objectives: This study aimed to explore the correlation of diffusion tensor imaging (DTI) parameters, fractional anisotropy (FA), and apparent diffusion coefficient (ADC) with the pathological grade of brain glioma and expression of vascular endothelial growth factor (VEGF) and Ki-67. Patients and Methods: A total of 116 patients were selected for this study from January 2018 to December 2019. All the participants underwent magnetic resonance imaging (MRI) and DTI before surgery, and the FA and ADC values were measured for the regions of interest. Surgically resected tumor specimens were collected for immunohistochemical assay. Finally, the FA and ADC values and positive expression rates of VEGF and Ki-67 were compared. Results: A significantly higher FA, besides the positive expression of VEGF and Ki-67, was reported in the high-grade group, whereas a lower ADC was found in this group compared to the low-grade group (P < 0.05). Areas of normal white matter and peritumoral edema had higher FA values, whereas lower ADCs were measured in these areas compared to the cerebrospinal fluid (P < 0.05). The FA of tumor parenchymal area was positively correlated with the World Health Organization (WHO) class of tumors (r = 0.588, P = 0.028), and the expression of VEGF and Ki-67 was positively correlated with the WHO grade (r = 0.843, P = 0.002 and r = 0.743, P = 0.006, respectively). The FA of tumor parenchymal area was positively correlated with the expression of VEGF and Ki-67 (r = 0.654, P = 0.008 and r = 0.567, P = 0.012, respectively). However, the ADC of tumor parenchymal area was not significantly correlated with the WHO grade, VEGF expression, or Ki-67 expression (r = 0.143, P = 0.156, r = 0.232, P = 0.116, and r = 0.054, P = 0.179, respectively). Conclusion: The FA value, as a DTI parameter, is valuable for assessing the malignancy grade of tumor cells and can provide a proper reference for formulating treatment regimens for brain gliomas.
Subject
Radiology, Nuclear Medicine and imaging