Diagnostic Value of Combined High-resolution Computed Tomography and Artificial Intelligence-Aided Diagnosis System in Prediction of Benign and Malignant Pulmonary Ground-Glass Nodules

Author:

Zou ZhenyuORCID,Niu Haiya,Cha Yongjiang,Yang Jianli,Han Wenqian

Abstract

Background: The widespread use of high-resolution computed tomography (HRCT) in lung cancer screening has allowed for an increased detection rate of ground-glass nodules (GGNs) in the lung. Hence, obtaining the correct clinical diagnosis of benign and malignant GGNs has become crucial. Objectives: Most artificial intelligence and computer-aided diagnosis (AI-CAD) systems for the classification of pulmonary GGNs fail to extract CT features. This study used HRCT and AI to analyze the CT features of GGNs to improve the prediction of benign and malignant pulmonary GGNs. Patients and Methods: This case-control study was performed on a malignant group consisting of patients and a benign group consisting of controls. A total of 204 patients with GGNs were recruited and divided into 2 groups according to their pathological results. Group A consisted of 69 cases with precursor glandular lesions (atypical adenomatous hyperplasia [AAH] and adenocarcinoma in situ [AIS]), inflammatory nodules, and benign nodules. Group B consisted of 135 cases with invasive lesions (minimally invasive adenocarcinoma [MIA], invasive adenocarcinoma [IAC], and other malignant lesions). Various CT features were compared between the 2 groups. The diagnostic efficacy of an AI-CAD system and radiologists’ reports for benign and malignant nodules were analyzed. A multivariate logistic regression analysis was performed to determine independent predictors of malignant GGN. A model that combined the AI system and manual extraction of radiological features was constructed. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficiency of the model. Results: Significant differences were found between malignant and benign groups according to the following 7 CT features: The GGN size (long and short diameters), vacuole sign, air bronchogram sign, vascular convergence sign, vascular perforator sign, interlobular septal obstruction sign, and spiculation (P < 0.05). The volume and mean CT values of precursor glandular lesions of the lungs were significantly different from those of invasive lesions (P < 0.05). The logistic regression model showed that the sensitivity and specificity of the AI system in diagnosing malignant groups were 0.756 and 0.696, respectively. The sensitivity and specificity of radiologists’ reports in diagnosing the malignant groups were 0.726 and 0.783, respectively. The combination of the 2 had a sensitivity of 0.768 and a specificity of 0.793. Conclusion: Prediction of the nature of GGNs based on CT features, including the vacuole sign, vascular perforator sign, and interlobular septal obstruction sign, were relatively accurate for a preliminary diagnosis. The AI system had a poorer diagnostic accuracy for GGNs than radiologists’ reports of CT images. The combination of AI and radiologists’ reports showed the highest diagnostic efficacy.

Publisher

Briefland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3