Comparing the Performance of Feature Selection Methods for Predicting Gastric Cancer

Author:

Mazreati HamedORCID,Radfar RezaORCID,Sohrabi Mohammad-RezaORCID,Sabet Divshali BabakORCID,Afshar Kazemi Mohammad AliORCID

Abstract

Background: Gastric cancer (GC) is a leading cause of cancer-related deaths, emphasizing the importance of timely diagnosis for effective treatment. Machine learning models have shown promise in assisting with GC diagnosis. Objectives: This study aimed at comparing the performance of various feature selection methods in identifying influential factors related to GC based on lifestyle using machine learning models. The ultimate goal was to enhance early detection and treatment of the disease. Methods: The data of patients from Shahid Ayatollah Modarres Hospital and Shohadaye Tajrish Hospital between 2013 and 2021 were utilized. Three feature selection methods (filter, wrapper, and filter-wrapper) were employed. The k-fold method validated each model. Four classifiers k Nearest Neighbor (kNN), Decision Tree (DT), Random Forest (RF), and Gradient-Boosted Decision Trees (GBDT) compared their outputs based on feature selection methods. Results: The filter-wrapper method outperformed others, achieving an area under the ROC curve and F1 score of 95.8% and 94.7%, respectively. GBDT also performed well. The wrapper and RF classifiers achieved an area under the ROC curve and F1 scores of 95.7% and 93.6%, respectively, after the filter-wrapper method. Without feature selection methods, the RF classifier had an area under the ROC curve and F1 scores of 95.6% and 91.7%, respectively, surpassing other classifiers. Conclusions: This study suggests that appropriate feature selection methods for identifying influential factors related to GC based on lifestyle can facilitate early diagnosis and treatment. The filter-wrapper method demonstrated the best performance in this regard.

Publisher

Briefland

Subject

Pharmacology (medical),Cancer Research,Radiology, Nuclear Medicine and imaging,Oncology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3