Evaluation and Comparison of Fullerene (C60) Aqueous Suspension Administration Effects with Memantine HCL in Rat Model of Alzheimer’s Disease Considering Behavioral Patterns and Spatial Memory

Author:

Andalib SinaORCID,Nikpour MehrnooshORCID,Hamidi MehrdadORCID,Javadi RafiORCID,Mohammadpour HamedORCID

Abstract

: Alzheimer's disease (AD) is among the most prevalent neurodegenerative disorders leading to dementia in the elderly. The accumulation of amyloid-beta (Aβ) plaques and the formation of tau protein tangles are primary contributors to AD, which induce oxidative stress. Fullerene C60, a nanoscale carbon allotrope with a diameter of 0.7 nanometers, stands out due to its structure rich in double bonds, making these nanoparticles effective radical scavengers. This property nominates them for potential use in treating neurodegenerative diseases like AD. In this study, unmodified pristine fullerene (C60), a highly hydrophobic molecule, was dispersed in water and administered intraperitoneally (1 mL, BID) to rats after inducing an AD-like condition with scopolamine hydrobromide (2mg/kg, i.p.). The aim was to assess the impact of fullerene (C60) treatment on cognitive behavior and spatial memory in rats, compared to the standard treatment with memantine HCL, using the Morris water maze method. The fullerene aqueous suspension (FAS) was prepared using a solvent exchange method involving a toluene/water mixture and ultrasonication. The concentration of fullerene particles in water was determined by high-performance liquid chromatography (HPLC) to be 21 µg/mL. The Dynamic Light Scattering (DLS) technique measured the average size and zeta potential of the nanoparticles as 119.14 ± 3.38 nm and -12.22 ± 5.98 mV, respectively. Treatment with FAS significantly improved memory impairment in rats compared to memantine HCL (10 mg/kg, i.p.) treatment. All rats survived until the end of the study, indicating no acute toxicity from FAS administration. These results may offer new insights into combating AD by introducing fullerene C60 as a promising nanoparticle with beneficial effects on behavioral patterns.

Publisher

Briefland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3